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1 EXECUTIVE SUMMARY

1.1 Introduction

Santa Margarita Groundwater Agency (SMGWA) was formed under the Sustainable
Groundwater Management Act (SGMA) and oversees development of a Groundwater
Sustainability Plan (GSP). The Santa Margarita Groundwater Basin (SMGB or Basin) model is
intended to support GSP development. ETIC originally developed the SMGB model in 2006,
Kennedy/Jenks Consultants updated the model in 2015, and Hydrometrics Water Resources Inc
(WRI) updated the model further in 2016 and 2017. Montgomery & Associates (M&A) has
updated the model to be a suitable tool for quantifying water budgets and simulating future
simulations based on different projects and management actions to support the GSP.

1.2 Results

The updates to the SMGB model include improvements to structure and inputs. Updates to the
model such as temporal refinement to monthly stress periods and extension of the domain to
cover SMGB provide the framework needed to run predictive future simulations based on
projected climate change and pumping datasets. Future model inputs are developed based on
different projects and management actions and are evaluated based on sustainability indicators.

Model calibration results indicate slight improvements from previous models for both
groundwater and surface water. Groundwater level hydrographs of targets generally calibrate
well to long-term trends and can be used to develop sustainable management criteria by
accounting for the magnitude of calibration error as well as projecting the expected benefits of
projects and management actions. Surface water flows generally calibrate well, but the model
does not simulate some observed base flows. Model simulation of stream discharge and seepage
can be improved with additional data from new streamflow gauging sites and accretion studies.

Page 1
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2 INTRODUCTION

2.1 Purpose of Model Update and Improvements
The SMGB model is intended to be used to support GSP development through the following:

¢ Quantifying historical, current, and future water budgets
e Projecting sustainability indicators
e Evaluating effects from projects and management actions
Future monthly climate and pumping projections are used as inputs for the predictive model.
The model had to be updated such that it can efficiently incorporate estimates of future
conditions based on climate projections and potential projects and management actions.
The model has also been expanded to cover the modified Santa Margarita Basin as required by
SGMA (Figure 1). Model update needs for supporting GSP development was guided by EKI
Environment & Water (EKI) model review (EKI, 2018) of the existing SMGB that was updated
for the Scotts Valley Water District (SVWD) Annual Report in 2016. The following are EKI
model review recommendations along with the corresponding sections in this report that address
them:
1. Expand model to agree with SMGB boundaries (Section 5.2.1).
. Preserve model cell dimensions or layering (Section 5.2).
. Revise water transmitting parameters (Sections 5.2.4 and 6.2.2).

. Refine recharge estimates (Sections 5.1.3 and 5.1.4).

. Modify or remove ET package (Section 5.1.5).

2

3

4

5

6. Perform quality checks on data (Section 5).

7. Extend historic simulation by adding 2017-2018 data (Section 5.1.1).
8. Update calibration (Section 5.2.4).

9. Change from quarterly to monthly stress periods (Section 5.1.1).

10. Include downscaled climate change in projected hydrology (Section 7.1).

Page 2
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2.2 Santa Margarita Basin Model History

The original version of the SMGB model was developed in 2006 by ETIC (ETIC, 2006) as part
of the Prop 84 Planning Grant via Santa Cruz Integrated Regional Water Management Plan
(IRWMP). The ETIC model was developed to provide a quantitative tool to assess regional
groundwater conditions for the SMGB and was updated in 2015 by Kennedy/Jenks Consultants
with updated geological interpretations (KJ model). Minor updates to extend the temporal data of
the KJ model was carried out by HydroMetrics WRI in 2016-2017. In 2018, the SMGWA-
commissioned EKI to evaluate the KJ model on its ability to support GSP development. EKI’s
report provided recommended updates to the model hydrogeologic framework, recharge,
evapotranspiration (ET), and model calibration as shown in Section 2.1. This report documents
the most recent model updates and improvements to the KJ model as part of developing the
SMGB GSP.

Page 3
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3 CONCEPTUAL MODEL UPDATES

General conceptual model details can be found in the KJ model report (Kennedy/Jenks, 2015)
and Section 2 of the GSP. Additional conceptual model updates include:

e Extension of existing spatial domain to include substantial extent of SMGB representing
hydrogeologic boundaries described in basin boundary modification report
(HydroMetrics WRI, 2016) and inclusion of Felton area alluvium

e Conversion of general head boundaries to no-flow boundaries along the model boundary
at Santa Cruz Mid-County Basin to represent hydrogeologic boundary based on granitic
high described in basin boundary modification report (HydroMetrics WRI, 2016)

e Removal of ET prior to recharge and runoff calculations from precipitation
e Removal of the simulation of ET by MODFLOW as recommended by EKI

Section 5.1 and 5.2 of this report elaborate further on how conceptual model updates are
implemented.

Page 5
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4 NUMERICAL MODEL AND CODE

The SMGB model was updated from MODFLOW-NWT to MODFLOW®6 (Langevin and others,
2017). MODFLOWEG is the most recent core MODFLOW code developed by the United States
Geological Survey (USGS). MODFLOWG6 allows for the following improvements to model
implementation:

e Multiple input files of the same model flow package to organize input development and
output processing

e Pass-through cells to efficiently simulate geological pinch-outs

e Routing of flow from one model flow package to another via Mover (MVR) package

MODFLOWEG is the most frequently updated and supported version by the USGS and allows
flexibility for future model updates.

Page 6
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5 MODEL UPDATES AND IMPROVEMENTS

Model updates primarily involve changes to model inputs and model structure. Model inputs

include period extension and refinement, pumping data, recharge and runoff, and ET. Structural
updates include domain expansion, pinch-outs, stream network, and vertical hydraulic
conductivity. This section addresses EKI recommendation 6 to perform quality checks on data as
referenced in Section 2.1 in this report.

5.1 Model Input Updates

5.1.1 Model Period Extension

Model period was extended through Water Year (WY) 2018 and was discretized into monthly
stress periods for a total of 409 stress periods to capture effects of seasonality and to match
climate projection datasets. These changes address EKI recommendations 7 and 9 for extending
the historical simulation and to change from quarterly to monthly stress periods as referenced in
Section 2.1 of this report.

5.1.2 Pumping Volumes
5.1.2.1 Public Water Supply Agencies

San Lorenzo Valley Water District (SLVWD), SVWD, and Mount Hermon Association (MHA)
meter extraction from their wells. Data were provided by the agencies as monthly volumes.

5.1.2.2 Small Water Systems

Since 2015, small water systems are required to report their monthly groundwater extraction to
the County of Santa Cruz. These data are used in the model where available. Where data are not
available, the same monthly volumes used in the KJ model were applied.

5.1.2.3 Private Residential

The location of private residential pumping was determined from County parcel data assigned as
residential that has a building structure built on it, and that falls outside of the water service areas
of SLVWD, SVWD, and MHA. The County’s well permit data for domestic wells were
compared with those selected parcels to ensure the locations of known wells aligned with those
areas identified by the parcel selection method.

The volume of private residential pumping is based on annual water use factors (WUF)
developed based on small water system metered use per connection. The annual WUF is
distributed to each month by the seasonal distribution of SVWD’s residential potable water

Page 7



J‘ 74 IONTGOMERY DRAFT

€ & ASSOCIATES

demand. The range in WUF per home is from 0.46 acre-feet per year (AFY) in WY 1985 to
0.23 AFY in WY2015 at the end of the recent drought.

An additional factor for changing population is applied to the data normalized to 2018 County of
Santa Cruz unincorporated population sourced from the California Department of Finance (2019)
population estimates. The range in the factor is from 0.89 in WY 1985 at the start of the model to
1 in WY2018 at the end of the model.

Total private residential pumping over the model period averages 309 AFY. The KJ model cited
an average of 282 AFY pumped by private wells from 1976 — 2012. This estimate only includes

wells in the central and southern portion of the Basin and did not include wells to the north, or in
the expanded portions of the modified Basin boundary.

5.1.24 Other Pumping

Other uses of pumped groundwater include sand quarries dust suppression and sand washing,
environmental remediation, industrial, pond-filling, and landscape irrigation. Of these uses, only
extraction for environmental remediation was metered. Pump and treat remediation were
deactivated at the Scotts Valley Dry Cleaners in August 2015 and at the Watkins-Johnson
Superfund site in July 2016. Groundwater pumping by these remediation systems was reported to
the United States Environmental Protection Agency. Discharge reports were accessed through
the State Water Resources Control Board GeoTracker database and used to update the volumes
included in the KJ model and for the extended period.

Estimates for groundwater pumped for sand quarries, pond-filling, and landscape irrigation
included in the KJ model were duplicated for the extended model period. Additional information
regarding water use and pumping can be found in GSP Section 2.

5.1.3 Recharge and Runoff

The KJ model (2015) used isohyetal rainfall zones from Johnson (2009) to distribute quarterly
precipitation totals from SVWD and SLVWD rain gauges to calculate recharge and runoff. The
M&A model uses monthly spatial mean precipitation data from Parameter-elevation Regressions

on Independent Slopes Model (PRISM) Climate Group (PRISM, 2004).

The KJ model used reference ET (ET,) based on data for Santa Cruz County from Snyder et al
1992 and CIMIS (1998, 2005). The M&A model uses ET, through 2000 provided by the
Hydrologic Model developed by Balance Hydrologics (City of Santa Cruz, 2021). PRISM mean
temperature data is used to extend the ET, data through 2018 with the Blaney-Criddle (1962)
method using adjusted factors from the Santa Cruz Water Balance Model. PRISM allows for
calculation of recharge and runoff using ET, consistent with climate change data sets. The KIJ

Page 8
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model used ET, as a model input scaled by a crop factor to simulate ET over riparian areas while
the M&A model uses ET, as a part of recharge and runoff calculations.

The KJ model partitioned precipitation to recharge and runoff in the KJ model (2015) based on
coefficients determined by land use and geology; remaining water after calculation of recharge
and runoff was assumed to be lost without consideration of reference ET. Precipitation
distribution has been updated to be affected by reference ET and therefore temperature with
Equation (1) for each watershed:

P =P —ET, =R+ RO (D
P.tr = effective precipitation
P = precipitation

ET, = reference evapotranspiration calculated from temperature using Blaney-
Criddle (1962)

R =recharge
RO = runoff

Pefr is then distributed to recharge-runoff zones within each watershed in the basin. Watershed
averages for precipitation and temperature for ET, in each recharge-runoff zone is calculated
directly from PRISM datasets. KJ model (2015) had 125 zones delineated by rainfall isohyetals,
land use, and geology. The number of zones is updated with watershed boundaries that
encompass the basin boundary for the M&A model. Watershed boundaries are refined by land
use and geology for a total of 420 zones.

The max precipitation filter used by KJ model (2015) is still applied to Petr as 50% of Pefr in
excess of 6.67 inches (20 inches per quarter) added to 6.67 inches as shown in Equation (2):

Pof,  Pepp < 6.67

Pcr—6.67 (2)
4 Pers ~667), Pops > 6.67

Pefffiltered = 6.67

A portion of Pesr fitcered 15 distributed as runoff to the streams based on an area-weighted average
of runoff coefficients within each watershed.

The second portion of Pefr applies the KJ model (2015) 3-quarter recharge lag of 60% from the
current quarter, 30% from previous quarter, and 10% of the 2" preceding quarter. Recharge lag
for the M&A model is converted to monthly terms of 20% of each month in the current quarter,

Page 9
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10% of each month in the previous quarter, and 3.33% of each month in the 2" preceding
quarter as shown in Equation (3):

2 5
Pefff”teredlag = 02 * Z Pefffiltered (month - l) + 01 * Z Pefffiltered (month - ]) +
i=0 ]=3

8
0.033 = z Pefffmered(month —k) (3)
k=

6

Petr filtered 1ag 1S distributed as recharge in each zone in the watershed weighted by zone area,
recharge coefficients, and percent of watershed that is inside the basin boundary; recharge
outside the basin boundary is assumed to not contribute inside the basin. Recharge and runoff
coefficients from the KJ model (2015) were retained. Figure 2 shows the average annual
recharge for each geology within the basin.

Recharge updates described this section addresses EKI recommendation 4 as referenced in
Section 2.1 in this report. Incorporating reference ET facilitates simulation of the effects of
warmer temperatures projected to occur with climate change.

Page 10
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5.1.4 Return Flow Recharge

Private well owner return flows comprise return flows generated from septic systems and
outdoor irrigation. Figure 3 shows the assumptions made to determine the amount of return flow
that recharges groundwater in the model.

Steady-state recharge from return flows in the Scotts Valley area are increased to account for
septic system return flows occurring prior to sewering the City of Scotts Valley in the mid-
1980s. Residential parcels are assumed to have septic systems and associated septic return flows
for the steady-state period using the same assumptions as for private well owners shown in
Figure 3.

Updated septic return flows for the M&A model (1,115 AFY average) is higher than in the KJ
model (658 AFY average) due to the higher percentage of residential use that becomes return
flow as well as the larger overall model area. Return flow averages over the model period are
summarized in Table 1.

Table 1. Average Return Flow Recharge Over Model Period

Average Over Model Period,
Return Flow Component Acre-Feet per Year
(Water Year 1985 — 2018)
Septic 1,115
Private Residential Landscape Irrigation 4
Landscape Irrigation in SLVWD, SVWD and MHA 26
Landscape Irrigation in Small Water Systems 13
Water System Losses 216
Sewer Losses 30

Return flow recharge updates described in this section addresses EKI recommendation
4 referenced in Section 2.1 in this report.
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Indoor use = 70%

Outdoor use = 30%

well

90% of Indoor Use
to Septic System
(63% of all water use

1 10% of Outdoor Use is Inefficient
! Irrigation (3% of all water use)

Depending on geology, a portion of 66% groundwater table
of all water used becomes groundwater recharge while the

remainder is consumed by use

Purisima/Santa Cruz Mudstone: 5% (3.3% of all water use)

Santa Margarita Sandstone: 60% (39.6% of all water use)

Monterey Formation: 15% (9.4% of all water use)

Lompico Sandstone: 40% (26.4% of all water use)

Butano Sandstone: 40% (26.4% of all water use)

Figure 3. Private Well Owner Return Flow Assumptions
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5.1.5 Evapotranspiration

The simulation of ET by MODFLOW is removed in the M&A model because it is factored in the
recharge-runoff calculations. Removal of simulated ET addresses EKI recommendation 5 to
remove or modify ET package as referenced in Section 2.1 in this report, Purpose of Model
Update and Improvements.

The existing model layer structure and cell dimensions are both preserved in the M&A model
which addresses EKI recommendation 2 as referenced in Section 2.1 in this report.

5.2 Model Structural Improvements

5.21 Model Domain Extension

The model domain is extended to include the Bulletin 118 Department of Water Resources
(DWR) basin boundary for the SMGB (DWR, 2018) using a 3D geologic model prepared in
Leapfrog Geo (Seequent, 2020). Leapfrog is used to define how lithologic contact surfaces
between the hydrogeologic units are defined as numerical model layers in the extended areas.
The areas where the numerical model is extended are shown in Figure 4 and described as:

e Northwest extension in the Boulder Creek area where the Zayante and Ben-Lomond
faults described in the basin boundary modification report (HydroMetrics WRI, 2016)
converge

e Southwest extension to include alluvium associated in the Felton area, west of Ben
Lomond Fault, included with the SMGB as part of the basin boundary modification
approval by DWR

e South extension to a granitic bedrock high defining part of the shared boundary with the
Santa Cruz Mid-County Basin boundary, as described in the basin boundary modification
request to DWR (HydroMetrics WRI, 2016)

e East extension: south of the Zayante fault to include the West Branch of Soquel Creek
that intersects the Butano aquifer of the Santa Margarita Basin

This addresses EKI recommendation 1 to expand model domain to agree with SMGB boundaries
as referenced in Section 2.1 in this report.

Page 14
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The M&A model extended areas are defined using hydrogeologic cross sections from the
SLVWD Water Supply Master Plan (Johnson, 2009), KJ model report (2015), surface geology,
selected well lithologic logs, and granitic bedrock derived from a residual gravity elevation map
(Roberts et al., 2004). Land surface elevations are extended using a Lidar-generated digital
elevation model (DEM) (USGS, 2012a and 2012b).

A summary of hydrogeologic units represented by the model layers in the extension areas
follows along with the specific data sources used to define model layer elevations:

e Northwest extension: The geologic unit contact surfaces are extended using SLVWD
Section C-C’, and DEM.

e Southwest extension: The Felton area alluvium west of Ben Lomond Fault in the Felton

area is a distinct geologic unit deposited on top of the Lompico aquifer Sandstone
(Figure 5). Alluvium thicknesses estimated from lithologic logs near Felton vary from
about 160 feet near Bean Creek, to about 100-125 feet near San Lorenzo River, and it
pinches out to the west where the Lompico aquifer sandstone outcrops. Model layer
elevations are based on Johnson (2009) cross sections A-A’ and D-D’, the extended
DEM, surface geology maps, and lithologic logs from eight wells located west of Ben
Lomond Fault. Alluvium is incorporated as part of layer 1 in the model and has its own
set of hydraulic properties because it is not a part of the Santa Margarita aquifer.

¢ South extension: The geologic unit contact surfaces are extended using lithologic logs of
wells in the extension area, granite bedrock elevation contour map, and DEM.

o East extension: The geologic unit contact surfaces are extended using granitic bedrock
contours derived from a residual gravity elevation map (Roberts et al., 2004), and
Johnson (2009) section A-A’.

With only 2 exceptions, the updated model layers within the existing KJ model domain are
consistent with the KJ model. The resulting lithologic contacts match the existing bottom
elevations of the KJ model layers. One exception occurs for model Layer 7 near the Santa Cruz
Mid-County Basin boundary, where the bottom elevations of KJ model Layer 7 (Lower Butano
aquifer-granitic bedrock contact) is merged with data from granitic bedrock contours derived
from a residual gravity elevation map (Roberts et al., 2004) that covers the south and southeast
edges of the model. A second exception occurs where bottom of Layer 7 matches this bedrock
contour map that extends above the bottom layers of the KJ model near Mount Hermon. General
head boundaries that used to run along the Mid-County Basin boundary were also switched to
no-flow boundaries based on historically stable water levels in the area and the conceptualization
of the granitic high representing a flow divide between the 2 basins.
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5.2.2 Model Pinch-Out Implementation

Pinch-outs were previously implemented using the horizontal flow barrier (HFB) package.
MODFLOWSG6 introduces the ability to assign pass-through cells which routes flow between the
over- and underlying cells of the pass-through cell (Figure 6). The HFB package has been
removed and pass-through cells are assigned to the same areas of pinch-outs in each layer as the
KJ model. Figure 7 and Figure 8 summarize pinch-out area delineations for Monterey Formation
and Butano aquifer. Pass-through cells allow for quicker model performance as no extra cells are
simulated to account for pinch-outs.

5.2.3 Stream Network Updates

The stream network properties of the Streamflow Routing (SFR) package are preserved within
the KJ model domain. Additional stream segments are added to model extension areas. The San
Lorenzo River (SLR) was represented in the KJ model using the River (RIV) package but is now
added to the SFR package in the M&A model due to availability of calibration data for seepage
and streamflow. The RIV package for Loch Lomond Reservoir is preserved due to limited
calibration data. General Head Boundary (GHB) cells are no longer used along SMGB basin
boundaries. GHB cells that represent springs and seeps are preserved to simulate flow into
Butano aquifer. Springs and seeps represented by the Drain (DRN) package in the existing model
are retained. Figure 9 shows the updated stream network.

New segments are assigned bottom elevations at the first and last reach via LIDAR. New
segment stages are set 2 feet above bottom elevation. Conductance values are calibrated, but
initial values for stream width, length, and streambed thickness are set to 10, 100, and 1 ft,
respectively. Roughness coefficients are maintained at 0.035 for all segments. Initial stream
conductivities from previous model are maintained and range from 0.005 to 15 ft/day. Stream
conductivity for new segments is initialized to 5 ft/day.

MODFLOW?G6 includes the MVR package which allows the routing of water between different
water flow packages. The updated DRN package is linked to the SFR with the MVR package to
route flows from springs and seeps to the stream network. MVR package is set up to route DRN
flows with monthly factors representing percentage of flow to be routed that vary based on
location and water year type. Monthly factors applied to model cells representing springs and
seeps listed in Table 2 are shown in relation to the stream network on Figure 10.
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Figure 6. Pass-through Cell Representation in MODFLOW6G
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Table 2. DRN Cell Factors

Cluster Water Year Type May Jun Jul Aug Sep Oct N:;r'
Wet 0.80 0.80 0.75 0.75 0.75 0.75 1.00
Spring Creek Normal 0.75 0.75 0.75 0.70 0.70 0.70 1.00
Gulch Dry 0.75 0.70 0.65 0.55 0.40 0.40 1.00
Critically Dry 0.65 0.60 0.50 0.40 0.30 0.30 1.00
Wet 0.90 0.85 0.75 0.70 0.65 0.65 1.00
Quail Hollow \ Normal 0.85 0.85 0.75 0.70 0.60 0.60 1.00

(San Lorenzo
River side) Dry 0.80 0.75 0.70 0.60 0.50 0.50 1.00
Critically Dry 0.70 0.65 0.55 0.45 0.40 0.40 1.00
Wet 0.90 0.80 0.70 0.60 0.50 0.50 1.00
Quail Hollow Normal 0.85 0.75 0.60 0.50 0.35 0.35 1.00

(Zayante Creek
side) Dry 0.75 0.65 0.55 0.40 0.30 0.30 1.00
Critically Dry 0.65 0.55 045 0.30 0.20 0.20 1.00
Wet 0.95 0.90 0.75 0.65 0.65 0.65 1.00
Canham- Normal 0.90 0.80 0.65 0.60 0.55 0.55 1.00
Glenwood Dry 0.80 0.65 0.60 0.45 0.35 0.35 1.00
Critically Dry 0.65 0.60 0.55 0.35 0.20 0.20 1.00
Wet 0.95 0.90 0.85 0.80 0.80 0.80 1.00
Mid-Zayante Normal 0.95 0.90 0.85 0.80 0.80 0.80 1.00
Creek Dry 0.90 0.85 0.80 0.80 0.75 0.75 1.00
Critically Dry 0.75 0.75 0.65 0.65 0.65 0.65 1.00
Wet 0.95 0.90 0.85 0.85 0.75 0.75 1.00
Mt Hermon-Bean Normal 0.95 0.90 0.85 0.80 0.75 0.75 1.00
Creek Dry 0.90 0.90 0.85 0.80 0.75 0.75 1.00
Critically Dry 0.85 0.85 0.80 0.80 0.75 0.75 1.00
Wet 0.95 0.90 0.85 0.85 0.75 0.75 1.00
Manana- Normal 0.95 0.90 0.85 0.80 0.75 0.75 1.00
Shadow Oaks Dry 0.90 0.90 0.85 0.80 0.75 0.75 1.00
Critically Dry 0.85 0.85 0.80 0.80 0.75 0.75 1.00
Wet 0.85 0.80 0.75 0.70 0.70 0.70 1.00
Normal 0.75 0.75 0.70 0.65 0.65 0.65 1.00
Skypark

Dry 0.75 0.70 0.70 0.65 0.65 0.65 1.00
Critically Dry 0.70 0.60 0.60 0.55 0.55 0.55 1.00
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5.2.4 Hydraulic Conductivity Updates

The KJ model implemented vertical hydraulic conductivity as part of the leakance property in
Groundwater Vistas (GWYV) with slightly different property zones than horizontal hydraulic
conductivity. The updated SMGB model implements vertical hydraulic conductivity using
anisotropy so a relationship between horizontal and vertical conductivity can be maintained over
the same zones. This allowed for more efficient calibration during parameter estimation.

Hydraulic property zone values from the KJ model (2015) calibration were preserved as initial
values. Hydraulic properties for the extended areas (Figure 4) are as follows:

e Northwest extension: Lompico aquifer and Butano aquifer hydraulic property zones are
extended from the existing domain.

e Southwest extension: Lompico aquifer hydraulic property zones are extended from the
existing domain and an additional hydraulic conductivity zone is added to represent the
alluvium (Figure 5) since it is a layer that separates creeks with Lompico aquifer and it is
not part of the Santa Margarita aquifer.

¢ South extension: Butano aquifer hydraulic properties are extended from existing domain.

e East extension: Butano aquifer hydraulic properties are extended from the existing
domain.

The hydraulic property updates described address EKI recommendation 3 to revise water
transmitting parameters as referenced in Section 2.1 in this report.
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6 MODEL CALIBRATION

Model calibration is split into surface water and groundwater calibration. Additional datasets for

model calibration include monthly groundwater levels, daily streamflow measurements, and
accretion studies. PEST-++ (2020) software suite was used along with manual trial and error to
perform parameter estimation using calibration data. Methods and results described in this
section address EKI recommendations 3 and 8 to revise water transmitting parameters and to
update calibration as referenced in Section 2.1 in this report.

The level of calibration is appropriate for use of the model in estimating water budgets in the
GSP and evaluating expected sustainability benefits of projects and management actions. Further
refinement may be needed to support more detailed planning of projects and management
actions. The calibration presented here is potentially non-unique; other combinations of
parameter values may equivalently match calibration data. We also recommend evaluating
predictive uncertainty when using the model for more detailed planning of projects and
management actions.

6.1 Calibration Methods

6.1.1 Surface Water Calibration

Stream conductance is the primary parameter that is estimated for surface water calibration.
Daily streamflow data throughout the model period from WY 1985 through WY2018 was
collected from the following locations:

e SLVWD: Boulder Creek and Lompico Creek

e Santa Cruz County: Bean Creek near Mount Hermon Camp and Zayante Creek at
Woodwardia

e USGS: Bean Creek near Mount Hermon Road, Zayante Creek, Carbonera Creek, and San
Lorenzo River at Big Trees

Streamflow data is aggregated into average monthly streamflow in cubic feet per second (cfs)
and used as calibration targets for simulated outflows for a total of 978 streamflow targets.

Stream seepage gains and losses are processed from accretion studies by Balance Hydrologics
for Bean Creek in June 2010 and San Lorenzo River in September 2017. A total of 17 seepage
calibration targets are compared to the simulated stream groundwater discharge. The stream
network is discretized into 26 conductance zones that are estimated in PEST using the described
streamflow and seepage data. Figure 11 shows the stream gauge locations, accretion study
points, and conductance zones used for surface water calibration.
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6.1.2 Groundwater Calibration

Groundwater level data for the whole model period from WY 1985 through WY2018 is sourced
from the database provided by SVWD and has been processed as average monthly groundwater
levels for a total of 59 target wells with 5621 targets. Target wells are selected based on spatial
distribution, and consistency and period of record of groundwater level measurement.
Groundwater elevation targets are used to calibrate horizontal (Kx) and vertical hydraulic
conductivity (Kz) and specific yield (Sy) and specific storage (Ss). There are 69 zones each for
Kx and Kz and 23 zones for both Sy and Ss across all 7 layers of the model. PEST-++ adjusted all
parameters zones to achieve best fit to all groundwater level targets with calibration also
informed by manual trial and error runs.

6.2 Calibration Results

6.2.1 Surface Water Calibration Results

Table 3 lists the final parameter values for stream conductance for each zone shown in Figure 11.

Table 3. Calibrated Streamflow Conductance

Stream Conductance Stream Conductance Stream Conductance Stream Conductance
Zone (ft2/day) Zone (ft2/day)
1 11.70 14 0.01
2 3.34 15 0.04
3 2.24 16 7.70
4 0.27 17 0.01
5 1.33 18 1.21
6 0.73 19 3.65
7 1.99 20 0.07
8 6.85 21 3.52
9 14.98 22 0.16
10 0.25 23 0.13
11 047 24 42.33
12 8.46 25 2.20
13 0.01 26 2.18

Streamflow calibration shows a good fit for Zayante Creek at Woodwardia (Figure 15), Bean
Creek at Mount Hermon Camp (Figure 17), Carbonera Creek (Figure 18), and San Lorenzo
River at Big Trees (Figure 19). Lompico Creek (Figure 13) indicates that the model simulates
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streamflow above 0.4 cfs. Base flows is underestimated for Boulder Creek (Figure 12) and is
overestimated within 1 cfs for Zayante Creek (Figure 14) and Bean Creek near Mt Hermon Rd.
(Figure 16).

Model calibration for streamflow is sufficient because baseflows trends are simulated within
1 cfs on all gauges except for Boulder Creek (Figure 12). The model can be used to estimate
surface water components of the water budget and provide the best available estimate of
streamflow depletion from pumping. Additional streamflow data from new gauges in areas of
interest would help improve model calibration.
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Measured seepage is intended to be used for qualifying streams as gaining or losing. Simulated
seepage is output on a cell-by-cell basis while measured seepage represents total seepage
between 2 accretion points. Simulated seepage at each stream cell is extrapolated by multiplying
cell-by-cell results by the number of stream cells between the 2 accretion points that bound the
stream cells. This allows for a more similar comparison of magnitudes between measured and
simulated as well as more granular identification of where the model simulates as gaining and
losing.

Figure 20 compares measured to extrapolated seepage for SLR for September 2017. Stream
gains are accurately simulated in Newell Creek and underestimated in Zayante Creek.

San Lorenzo River gains are accurately simulated except for the stretch after the confluence with
Zayante Creek where loss was simulated instead. Simulated seepage at the Big Trees gauge is
overestimated compared to the neutral flows indicated by measured data but flows near Big
Trees are typically large (Figure 19) and the measured data might not be a representative
average.

Measured seepage for Bean Creek for June 2010 (Figure 21) shows gaining segments at the first
and last segments with the middle segments as losing. Simulated seepage for Bean Creek shows
stretches of gaining and losing in the middle segments with higher magnitudes which indicate
more variation along segments than indicated by measured data.

Additional accretion data is provided by Balance Hydrologics for September 2019 to represent
more recent trends. Simulated seepage for September 2019 is extracted from the predictive
baseline simulation described in Section 7.2 and shows similar results to simulated seepage in
June 2010. Measured data indicates dominantly gaining streams throughout Bean Creek which
generally matches simulated trends (Figure 22).

The model calibration is sufficient for the purposes of evaluating stream conditions as gaining or
losing which is the intention of measured seepage. Simulated seepage generally matches the
direction of measured seepage along stream reaches with seepage data and additional accretion
studies would help improve overall calibration.

Stream conductance zones 21-26 are along stream reaches that are not connected to any
streamflow or seepage calibration points and there are relatively few groundwater level data in
the area. Therefore, stream-aquifer flows for the eastern part of the Basin are not well calibrated.
Stream conductance zone 24 represents the Upper Blackburn Gulch area near the edge of the
model and has the highest conductance to better simulate high groundwater levels in the Butano
aquifer. Streamflow or seepage data would be needed to better evaluate whether the stream is a
source of recharge or whether there is another explanation for high groundwater levels in the
area.
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6.2.2 Groundwater Calibration Results

Calibrated parameters for Kx, Kz, Sy, and Ss are shown in Figure 23 through Figure 30.
Comparison of simulated head and observed head (Figure 31) indicates that the model simulates
heads matching observations for most layers, but underpredicts heads in Butano aquifer

Layers 5-7. Updated reference point elevations (RPE) provided post-calibration resulted in more
instances of underprediction. Figure 32 shows mean target residuals by aquifer calculated as the
average of observed data less modeled data in model time. The model has a similar spread of
over- and underprediction in the Santa Margarita aquifer and Monterey Formation with relatively
small mean residuals. There are more locations of underprediction than overprediction in the
Lompico aquifer, while Butano aquifer is generally underpredicting groundwater levels.

The GSP has 14 representative monitoring points (RMP) at which sustainable management
criteria are defined. These are selected from 59 well targets used in calibration to represent
groundwater level conditions for each model layer. Hydrographs showing observed groundwater
levels and simulated groundwater levels from the M&A model and the KJ model for the

14 RMPs are shown in Figure 33 through Figure 46. RMPs for each aquifer are as follows:

e Santa Margarita aquifer: SLVWD Quail MW-A, SLVWD Quail MW-B, SLVWD
Olympia #3, SLVWD Pasatiempo MW-2, SVWD TW-18, and SV4-MW

e Monterey Formation: SVWD #9

e Lompico aquifer: SLVWD Pasatiempo MW-1, SVWD #10, SVWD #11A, and SVWD
TW-19

e Butano aquifer: SVWD #15 Monitoring Well, Canham Well, and Stonewood

Santa Margarita aquifer RMPs show good fits at SLVWD Olympia #3 (Figure 33) and SLVWD
Quail MW-A (Figure 35); overprediction with good long-term trend at SLVWD Quail MW-B
(Figure 36); underprediction with good long-term trends at SV4-MW (Figure 37); and
underprediction without good long-term trends at SLVWD Pasatiempo MW-2 (Figure 34) and
SVWD TW-18 (Figure 38). SLVWD Olympia #3 and SLVWD Pasatiempo MW-2 performed
similarly to KJ model (2015) while SLVWD Quail MW-A and SV4-MW show improved fit.
SVWD TW-18 and SLVWD Quail MW-B show worse overall fit to data, but the latter two show
improved long-term trends compared to the KJ model (2015).

SVWD #9 (Figure 39) is the only RMP in the Monterey Formation and improves fit to declining
trend from the beginning of the model period but deviates around 1995. There are improved
simulation results starting in 2002 compared to the KJ model.
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Lompico aquifer RMPs show good fit at SVWD #11A (Figure 42) and underprediction with
good long-term trends for SLVWD Pasatiempo MW- 1 (Figure 40), SVWD #10 (Figure 41),
and SVWD TW-19 (Figure 43). The KJ model performs better on SVWD #10 and Pasatiempo
MW-1, but the latter has a better long-term trend while the M&A model shows improved fit at
SVWD #11A and SVWD TW-19.

RMPs in the Butano aquifer show good fit at SVWD #15 Monitoring Well (Figure 45), but
consistently underpredicts at Canham Well (Figure 44) and Stonewood Well (Figure 46).
Canham Well and Stonewood Well for the M&A model performs better than the KJ model while
SVWD #15 Monitoring Well predicts similarly between both models.

Vertical gradients were not used as part of the calibration, but 4 sites of the 9 presented by EKI
in its review of the KJ model are available for comparison of vertical gradients from to the
selection of target wells. Simulated results for Site 1 (Figure 47) indicate a greater downward
gradient relative to the measured by about 30 ft. Site 2 (Figure 48) shows that simulated vertical
gradient is less than observed while Site 4 (Figure 49) shows more variation and greater vertical
gradient than observed. Site 9 (Figure 50) shows little vertical gradient for both simulated and
observed during the period when vertical gradient data are available.

Model calibration to groundwater level data is sufficient because long term trends at RMPs are
generally simulated. The calibrated model can be used to interpret projected hydrographs from
future scenario models by accounting for simulated average water level offsets. The calibrated
model can also be used to estimate historical, current, and projected water budgets as required
for the GSP. Recalibration can improve the model with additional grondwater level data at
existing RMPs and new areas of interest.
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Figure 43. SVWD TW-19 Hydrograph
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7 PREDICTIVE SIMULATIONS

A predictive baseline simulation based on projected climate change has been developed to set up
the M&A model for alternative predictive simulations. Alternate predictive simulations are
developed to evaluate the effects of 2 groundwater management projects:

e Expanded conjunctive use of surface water and groundwater for in-lieu recharge of
groundwater by increased surface water use and proportional reduction in groundwater
use by SLVWD and SVWD

e Recharge of purified wastewater via injection wells

7.1 Projected Climate Change Scenario

EKTI’s recommendation 10 to include down-scaled climate change in projected hydrology is
based on GSP regulation requirements for the GSP’s projected water budget to incorporate
projected climate change over the planning and implementation horizon. It also follows that
model evaluation of expected benefits of projects and management actions over the planning and
implementation horizon should also incorporate projected climate change. Projected climate
change has been incorporated into the predictive simulations as described below.

7.1.1 Local Datasets for Climate Change

Although DWR provides projected climate change data sets for use in GSP development,
DWR’s guidance document on climate change data sets (DWR, 2018) states:

Local considerations and decisions may lead GSAs to use different approaches and
methods than the ones provided by DWR for evaluating climate change. For example, the
use of a transient climate change analysis approach may be appropriate where local
models and data have been developed that include the best available science in that
watershed or groundwater basin.

While DWR’s datasets are based on a climate period approach that incorporates the effects of
climate change based on projected change from historical conditions to a specific future period
(e.g. 2030 or 2070), transient climate change analysis evaluates the change of effects of climate
change progressing over time (e.g., simulating the increasing effects of climate change from
2020 to 2070). Table 4 shows the local models and data that have previously been developed in
the Basin’s watershed and region.
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Table 4. Climate Change Model Scenarios Used Locally

Name Primary Client Primary Project Description

Climate Catalog | Santa Cruz Mid-County | Santa Cruz Mid- Probabilistic selection of climate from
Groundwater Agenecy | County Basin GSP | historical years with higher weight for warmer
years (HydroMetrics WRI, 2017)

GFDL2.1 A2 City of Santa Cruz Water Supply Single global circulation model in the CMIP3
Advisory ensemble (Stratus et. al, 2015)
Committee
CMIP5 Mod City of Santa Cruz Habitat Statistical sample of multiple global
(CC Projection Conservation Plan circulation models in CMIP5
2 in Balance, ensemble(Balance, 2020)
2020)

7.1.2 Simulated Climate Change Scenario

The predictive simulations use a transient climate change analysis that is a statistical sample of
4 global circulation models in the CMIP5 ensemble. A transient analysis is appropriate to
represent inter-annual variability of precipitation that is indicated by recent research (Swain et
al., 2018). The statistical sample is developed using the methodology implemented by Balance
for the CMIP5 Mod scenario (Balance, 2020). The 4 global circulation models included in the
statistical sample represent moderate overall conditions and are ACESS1-0.1, CCSM4.1,
HADGEM2-CC.1, CANESMI1 models of the RCP8.5 high emissions scenario.

As described by Balance (2020), precipitation is assigned on an annual basis based on whether
the average annual rainfall for all samples is below (dry) or above (wet) the average annual
rainfall for the entire projection period. For dry years, the sample representing the 10" percentile
of annual rainfall is used. For wet years, the sample representing the 75" percentile of annual
rainfall is used.

The following plots label the climate change scenario used for the Santa Margarita basin model
predictive scenarios as “Four Model Ensemble 50-99.” Figure 51 shows the annual variability in
precipitation for the Four Model Ensemble 50-99 compared to Climate Catalog used for the
Santa Cruz Mid-County GSP, GFDL2.1 from the CMIP3 global circulation model ensemble
used for the City of Santa Cruz Water Supply Advisory Committee, and GFDL CM3 from the
more current CMIP5 ensemble. As designed, the annual variability in precipitation for the Four
Model Ensemble 50-99 is greater than the other 3 scenarios. Figure 52 shows the cumulative
departure from historical mean for Four Model Ensemble 50-99 compared to the historical mean.
The Four Model Ensemble 50-99 ends up slightly drier than the historical mean and simulates a
wetter than average period from 2023-2030, a predominantly average period from 2035-2045,
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and an extended drought from 2050-2064. These periods can be used to evaluate basin
sustainability under a wide range of potential future climatic conditions.

The climate change scenario used for the predictive scenarios differs from CMIP5 Mod in that a
warming trend is enforced. Temperature is assigned on an annual basis based on whether the
average annual temperature for all samples is below (cooler) or above (warmer) the average
annual temperature for the entire projection period. For the cooler years, the sample representing
the 50™ percentile of annual temperature is used. For the warmer years, the sample representing
the 99" percentile of annual temperature is used.

Figure 53 shows how the simulated temperature of the Four Model Ensemble 50-99 translates to
reference evapotranspiration used in the predictive simulations compared to the three other
scenarios. Reference evapotranspiration increases over time in the predictive simulations
consistent with the expected warming trend due to climate change.
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Figure 51. Precipitation Variability between Climate Models
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7.2 Baseline Simulation

A 54-year predictive baseline simulation was developed starting from WY?2019, which is the
year following the last water year of the calibrated model, through WY2072. The predictive
period covers the 50-year GSP planning and implementation horizon from WY2022 through
WY2072 as required by the SGMA. A baseline simulation is needed to evaluate the impact on
the Basin from potential projects and management actions to be implemented to achieve
sustainability by 2042.

7.2.1 Baseline Groundwater Extraction

Where available, actual measured data for groundwater pumping is used for WY2019 and
WY2020. For WY2021 through WY2072 the following assumptions are made regarding
groundwater pumping and water use:

e Private domestic pumping: since there are no meters on private well owner wells,
metered pumping from small water systems that are required to be metered is used to
determine a likely WUF. For the entire predictive period, the WUF remains constant at
0.3 AFY and there is no assumed increase in rural population over time. The amount of
pumping each month is based on the seasonal distribution of SVWD’s residential potable
water demand consistent with the historical simulation of the M&A model.

e Small Water Systems pumping: where available, metered pumping data reported to
County of Santa Cruz are used. In cases where there are gaps in reported pumping, the
same annual pumping and monthly distribution used in the historical simulation of the
M&A model is used for the predictive period.

e Mount Hermon Association pumping: the current residential area in MHA is built out
and thus no increase in water demand is assumed over the predictive period. Since there
are large areas of turf irrigation in MHA, annual groundwater pumping is varied by
predicted water year type from projected climate described in Section 7.1.2. Average
annual groundwater pumping for each of the 4 water year types is calculated, and that
average pumping is applied to predicted water year types to arrive at predicted MHA
annual pumping which is then distributed using the same monthly distribution used in the
historical simulation of the M&A model.

e San Lorenzo Valley Water District water demand and well pumping: annual water
demand increase is assumed to be 0.18% over the predictive period. Historical rainfall
and diversion data are used to provide an approximate correlation between annual rainfall
versus annual diversions. The historical correlation is applied to predicted annual rainfall
from climate change hydrology (Section 7.1.2) to arrive at predicted surface water
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diversions. Groundwater pumping makes up the difference between water demand and
surface water diversions. An adjustment is made to October through March 2021 surface
water diversions where diversions are assumed to be zero because of damage to
SLVWD’s surface water systems caused by the August CZU Lightning Complex fire.
During the months where there are no surface water diversions, groundwater pumping is
increased to meet water demand. The distribution of pumping by well is based on the
distribution of actual pumping during September 2020.

e Scotts Valley Water District water demand and well pumping: the amount of
groundwater pumping from WY2021 through 2072 is based on an assumed water
demand increase of 0.3% per year (2015 Urban Water Management Plan (UWMP),
Kennedy/Jenks Consultants, 2016) starting at actual WY2020 water demand. It is noted
that the demand increase used for the predictive simulation is higher than the 2020
UWMP projection of 0.15% (WSC and M&A, 2021) which was developed after the
predictive simulations were developed. Reasons for the lower rate of demand increase is
because system water losses are expected to decrease 10% by 2040 due to water use
efficiency measures such as advanced metering infrastructure, leak detection and
reduction, WaterSmart technology, and active promotion of lawn rebates. Due to a
reduction in recycled water demand in Scotts Valley, projected recycled water use each
year is held constant at 200 AFY. Groundwater pumping makes up the difference
between water demand and recycled water use.

7.2.2 Results of Baseline Simulation

Predicted groundwater level results for baseline simulation are shown on hydrographs for all
RMPs on Figure 56 through Figure 69.

Minimum thresholds for sustainable management criteria as defined by GSP Section 3 for RMPs
are shown in Table 5. Minimum thresholds are an average of the 5 lowest groundwater level
measurements in the historical period. Each projected hydrograph is shifted by an average offset
between measured and simulated groundwater levels in the calibrated model for improved fit.
This allows for a more representative interpretation of projected water levels relative to
measured historical data.

Most RMPs fall below minimum thresholds once extended drought occurs in WY2052. SLVWD
Pasatiempo MW-2 (Figure 57), SVWD #9 (Figure 62), SLVWD Pasatiempo MW-1 (Figure 63),
SVWD #10 (Figure 64), and SVWD TW-19 (Figure 66) maintain projected groundwater levels
above their corresponding minimum thresholds without any projects and management actions.
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7.3 Expanded Conjunctive Use with Loch Lomond (In-Lieu Recharge)

Expanded conjunctive use with the addition of SLVWD’s entitlement to a portion of Loch
Lomond water facilitates in-lieu recharge of the aquifers pumped by SLVWD and SVWD in the
wet season months. The volumes of surface water available for conjunctive use are based on
projected availability of surface water to satisfy SLVWD and SVWD demand during November
through April. The following surface water sources are considered:

e 313 AFY from Loch Lomond, based on a draft agreement between SLVWD and the City
of Santa Cruz (Exponent, 2019).

e Additional surface water diversions from North System streams tributary to the San
Lorenzo River, subject to physical projected surface water availability, includes Peavine
Creek, Foreman Creek, Clear Creek, and Sweetwater Creek.

e Additional surface water diversions from Felton System streams tributary to the San
Lorenzo River, subject to both physical projected surface water availability and
administrative constraints, includes Fall Creek, Bennet Spring, and Bull Creek.

Figure 54 shows the locations of SLVWD surface water diversions from the creeks listed above.
Expansion of existing conveyance and treatment infrastructure would be required for the
additional surface water diversions considered as part of this simulation. For modeling purposes,
it is assumed that the infrastructure necessary for additional surface water diversion would be
completed by WY2025.

Legal rights to transfer surface water outside of the SLVWD system from which the diversion
takes place is not explicitly considered as part of this evaluation. In other words, it is assumed
that any necessary surface water permits required to support additional surface water diversions
will be in place by WY2025.
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7.3.1 Projected Physical Availability of Surface Water

The physical availability of surface water is projected using the same assumptions and
calculations used to determine surface water flows generated both inside and outside of the Basin
(Section 5.1.3).

Surface water runoff calculations used to provide input to the groundwater model are at the
subwatershed scale. The contributing area for each SLVWD point of diversion is smaller than
the subwatersheds for which surface water runoff was calculated (Figure 54). Projected surface
water runoff for each point of diversion is therefore rescaled to its corresponding contributing
area by multiplying surface water runoff for the subwatershed area by the ratio of the
contributing area to the subwatershed area for each point of diversion.

The surface water runoff calculations described in Section 5.1.3 do not explicitly consider or
quantify baseflow or hydrograph recession following precipitation. Consequently, zero surface
water runoff is calculated during a spring month with zero precipitation, even if that month was
preceded by several months with above-average precipitation. This approach is used because
evaluating and simulating watershed rainfall-runoff responses was outside the scope of the GSP
model. However, baseflow in streams used for SLVWD surface water diversions is relevant for
the purposes of determining how much additional surface water would be available to support in-
lieu recharge.

Monthly streamflow for the streams used for in-lieu recharge is estimated as the cumulative
runoff less the cumulative diversion over preceding months during each water year. For example,
January streamflow would be computed as total October through January runoff less total
October through January surface water diversions. The purpose of this simplified approach is to
approximate the concept of surface water baseflow, even though baseflow is not explicitly
quantified by the surface water runoff calculations used for the model.

7.3.2 Assumed Administrative Constraints on Additional Surface Water Use

In addition to water physically available in the stream, additional surface water diversions for
conjunctive use are assumed to be constrained by the conditions of relevant surface water
diversion permits.

Loch Lomond: It is assumed that Loch Lomond releases will be limited to 313 AFY.

SLVWD North System: It is assumed that additional diversions from streams in the SLVWD
North System are limited solely to the water physically available in the creeks.
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SLVWD Felton System: Additional diversions from creeks serving the Felton System are
assumed to be limited by the following constraints (Exponent, 2019):

e Minimum Fall Creek winter (November 1 through March 31) bypass flow of 0.75 cfs for
dry years, and 1.5 cfs for otherwise. Dry years are defined based on cumulative flow
volume in the San Lorenzo River at Big Trees from the beginning of the water year, and
it should be noted that the administrative definition of dry year used to constrain Felton
System diversions differs from the definition of dry year used for the GSP.

e Maximum diversion rate of 1.7 cfs

e Maximum annual diversion volume of 1,059 AF

Furthermore, it is assumed that diversions from streams serving the Felton System are permitted
only if streamflow in the San Lorenzo River at Big Trees is at least 20 cfs (Exponent, 2019).
Projected streamflow in the San Lorenzo River at Big Trees as simulated in the baseline
simulation was used to identify dry years and months with streamflow less than 20 cfs.

7.3.3 Reductions to Projected Groundwater Pumping

Reductions of groundwater pumping for in-lieu recharge is preferentially allocated to the
SLVWD Pasatiempo wellfield and all SVWD extraction wells. This assumes, as noted in Section
7.3, that additional surface water can be treated and conveyed to the point of use. November
through April groundwater pumping is reduced monthly as follows:

1. 313 AFY Loch Lomond water is used to offset SLVWD Pasatiempo wellfield pumping,
followed by SVWD pumping.

2. SLVWD North System surface water is used to first offset SLVWD Pasatiempo
pumping, followed by SVWD pumping. Any remaining surface water is used to offset
SLVWD pumping from its Olympia and Quail Hollow wellfields. On average 99 AFY of
surface water is used conjunctively from the North System over the predictive period.

3. SLVWD Felton System surface water is used to first offset SLVWD Pasatiempo
pumping, followed by SVWD pumping. Any remaining surface water is used to offset
SLVWD pumping from its Olympia and Quail Hollow wellfields. On average 128 AFY
of surface water is used conjunctively from the Felton System over the predictive period.

Figure 55 shows projected groundwater pumping and surface water diversions by water district
based on the conjunctive use evaluation described above. From WY2025 through WY2072,
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average groundwater pumping reductions by SLVWD and SVWD are 170 AFY and 370 AFY
respectively, for a total average of 540 AFY.

Note that the estimate of available surface water for conjunctive use is only preliminary since
there are future water rights change applications planned by the City of Santa Cruz and SLVWD
that would change assumptions used in developing this preliminary estimate.

7.3.4 Results of Expanded Conjunctive Use

Predicted groundwater level results for simulation of 540 AFY of expanded conjunctive use are
shown on hydrographs for all RMPs on Figure 56 through Figure 69.

Expanded conjunctive use predicted groundwater levels show little improvement in all Santa
Margarita aquifer wells (Figure 56 through Figure 61) and in Stonewood Well in Butano aquifer
well (Figure 69), but indicate a benefit in achieving minimum thresholds before the extended
drought in the remaining wells in Monterey Formation, Lompico aquifer, and Butano aquifer
(Figure 62 through Figure 68). Predictive groundwater levels begin to fall below minimum
thresholds during the extended drought starting in WY2052 (Figure 62 through Figure 68).

7.4 Recharge by Injection Only

The injection only simulation was developed to determine improvements to Lompico aquifer
groundwater levels due to aquifer recharge by injection. The source of injection water is not a
consideration for purposes of modeling, although Section 4 of the GSP describes some potential
sources. The simulation assumes a constant volume of 710 AFY is injected at 3 injection wells
located near the SVWD’s El Pueblo yard and injection is distributed uniformly over each month.
The simulation assumes the injected water is left in the aquifer and not pumped out.

Predicted groundwater level results for simulation of 540 AFY of expanded conjunctive use with
710 AFY of injection of the Lompico aquifer are shown on hydrographs for all RMPs on Figure
56 through Figure 69.

Measurable objectives for sustainable management criteria as defined by GSP Section 3 for
RMPs are shown in Table 5. Results from expanded conjunctive use for WY2040 are used to
determine measurable objectives for RMPs at Monterey Formation, Lompico aquifer, and
Butano aquifer. Santa Margarita aquifer RMP measurable objectives are based on historical
values in WY2004.

Predicted groundwater levels from expanded conjunctive use with injection only share similar
results as described in Section 7.3.3 where there is minimal benefit in Santa Margarita aquifer
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wells (Figure 56 through Figure 61) and Stonewood Well in Butano aquifer (Figure 69), but
more favorable benefit in the remaining wells in the Monterey Formation, Lompico aquifer, and
Butano aquifer (Figure 62 through Figure 68). Expanded conjunctive use with injection action
can maintain predictive groundwater levels above measurable objectives and minimum

thresholds throughout the entire projection period from WY2021 through WY2072 (Figure 62
through Figure 68).
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Figure 65. SVWD #11A Projected Hydrograph
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Table 5. Minimum Thresholds and Measurable Objectives Milestones for Groundwater Levels based on GSP Section 3

DRAFT

Groundwater Elevation (feet above mean sea level)

Aquifer Well Name
Minimum Threshold Measurable Objective
SLVWD Quail MW-A 413 416
SLVWD Quail MW-B 451 474
. SLVWD Olympia #3 304 309
Santa Margarita -
SLVWD Pasatiempo MW-2 500 516
SVWD TW-18 462 471
SV4-MW 381 387
Monterey SVWD #9 303 360
SLVWD Pasatiempo MW-1 336 374
_ SVWD #10 288 324
Lompico
SVWD #11A 290 319
SVWD TW-19 314 376
Lompico/Butano SVWD #15 Monitoring Well 291 333
SVWD Stonewood Well 839 847
Butano
SVWD Canham Well 427 466
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8 CONCLUSIONS

The objectives for updating and improving the structure and inputs of the SMGB model are to
improve its use as a suitable tool to support GSP development and to guide groundwater
management decisions as the GSP is implemented. Upgrading to MODFLOW®6 allowed for more
efficient implementation of geological pinch-outs, routing of springs and seeps to the stream
network, and organization of model inputs by having separate recharge packages for
precipitation and return flow recharge. Model stress period refinement from quarterly to monthly
allowed more compatibility with projected climate change datasets. Recharge and runoff
calculations were redeveloped to maintain traceable water balance with precipitation and
evapotranspiration. Model domain expansion allowed the model to cover the entire SMGB area.

Most changes described were made with guidance from EKI recommendations (Section 2.1).

The updated SMGB model is generally able to simulate surface water and groundwater
observations with slight improvements from previous model-term trends, but actual quantified
values are offset at some locations. The model functionality and calibration is appropriate for
estimates of historical, current, and projected water budgets as required for the GSP. As
importantly, the model has the framework to run alternative simulations based on projects and
management actions. With projected climate change and future pumping included in predictive
simulations, various project or management action simulations can be compared to a baseline
“no project” condition to quantify groundwater impacts and benefits. The simulation of long-
term trends in the updated SMGB model allows for evaluation of alternative simulations at
RMPs.

Recommended improvements to the model include reevaluation and recalibration after:
e Surveyed verification of all RPEs

e Several years of streamflow monitoring at 5 newly established gauges discussed in
Section 3.3 of the GSP

e Additional stream seepage from accretion studies, new RMPs in data gap areas, and
groundwater level data for all model targets.

Given the likelihood that any model calibration is non-unique, we also recommend evaluating
predictive uncertainty when using the model for more detailed planning of projects and
management actions.
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