Santa Cruz Water Commission Aquifer Storage and Recovery Project Phase 1 Investigation Update

City of Santa Cruz Water Department

October 1, 2018

Robert C. Marks, P.G., C.Hg., Principal Hydrogeologist Pueblo Water Resources, Inc.

Outline

- Phase 1 Feasibility Investigation Status
- Groundwater Modeling
 - Overview
 - Scenario Descriptions
 - Results for Key Scenarios
 - Summary of Key Findings
 - Potential Future Scenarios
- Water Supply Advisory Committee Performance Metrics Update
- Next Steps
- Q & A

Phase 1 Technical Feasibility Investigation Primary Purposes

- Validate (and refine) WSAC ASR Recon-Study Findings:
 - 1. Per-well injection capacities
 - 2. Geochemical interaction potential
 - 3. Aquifer storage capacities
 - 4. Aquifer hydraulic losses
- Develop information needed to scope and budget Phase 2 ASR Pilot Testing

Phase 1 Technical Feasibility Investigation Current Status

- Technical Feasibility Analysis Tasks:
 - 1. ID Existing Wells for ASR Pilot Testing COMPLETE
 - 2. Site-Specific Injection Capacity Analyses COMPLETE
 - 3. Geochemical Interaction Evaluation COMPLETE
 - 4. Phase 2 ASR Pilot Test Work Plans **PARTIALY COMPLETE**
- Groundwater Modeling Tasks
 - 1. New ASR Well Siting Studies COMPLETE
 - 2. Groundwater Modeling **PARTIALY COMPLETE**

Phase 1 Technical Feasibility Investigation Current Schedule

Task Name	2016	2016			2017			2018				20	
	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qt
	Jan e	MarApr a Ji	un Jul u e	Oct o e	e Jan e Ma	arApr a Jur	n Jul u ∈	Octo	e Jan e M	arApr a J	un Jul u	e Oct o	e Jan
Technical Feasibility Analyses		-											
T1.1 - Existing Wells Screening													
T1.2 - Site-Specific Injection Capacity Analyses													
T1.3 - Geochemical Interaction Analysis			[) 									
T1.4 - Pilot ASR Testing Program Development													
Groundwater Modeling		-											
T1.5.1 - Well Siting Study													
T1.5.2.1 - Confluence Model Coordination													
T1.5.2.2 - ASR Model Scenario Development													
T1.5.3 - GW Modeling													

Groundwater Modeling Study Area Map

Groundwater Modeling

Overview

- Two independent models:
 - Santa Margarita Groundwater Basin (SMGB)
 - Santa Cruz Mid-County Groundwater Basin (MGB)
- Both utilize USGS MODFLOW code
- Calibrated against historical based periods of 1985 2015

Groundwater Modeling

- Primary Purpose Validate WSAC Assumptions regarding feasibility of ASR
 - GW Basin Storage Capacities (3 bg combined)
 - Storage Losses (20%)
 - Per-Well Injection Rates (0.3 0.5 mgd avg)

Model Scenario Development

Confluence is a Bridge Between Models

Confluence Modeling Results: Infrastructure Requirements

		BASE	HI	STORICAL FLO	WS	C	CLIMATE CHANGE			
		ASSUMPTIONS	1. In-Lieu	2. ASR	3. In-Lieu/ ASR	4. In-Lieu	5. ASR	6. In-Lieu/ ASR		
			Direct Felton	Direct Felton	Direct Felton	Direct Felton	Direct Felton	Direct Felton		
Infractructure	Cill	N/A	Diversion	Diversion	Diversion	Diversion	Diversion	Diversion		
& Water	r III		N/A	5.5 mgd	1.5 mgd	N/A	6.0 mgd	2.0 mgd		
Rights			N/A	injection	injection	11/0	injection	injection		
	Drawdown	N/A	4.0 mgd	4.0 mgd	4.0 mgd	4.0 mgd	6.0 mgd	6.5 mgd		
		17/5	extraction	extraction	extraction	extraction	extraction	extraction		
	Worst-									
	Year PS	Historical: 1380	400	0	0	470	0	0		
	Shortage	Clim Chg: 1230	400	0	0	470	0	U		
Water Supply	(mg)									
Reliability	Two-Year									
	PS	Historical: 1850	400	0	0	470	0	0		
	Shortage	Clim Chg: 2310	400	0	0	470	0	0		
	(mg)									

Source: Table 8, Fiske Technical Memorandum dated 3/8/17

Simulated ASR/Recovery Wells SMGB

11

Simulated ASR/Recovery Wells SMGB

Ē

		Estimated Capacities								
	Target	Injec	ction	Produ	uction					
Well ID	Aquifer	(gpm)	(mgd)	(gpm)	(mgd)					
SV-1	По	150	0.22	750	1.0					
SV-2	Tlo	205	0.30	750	1.0					
SV-3	По	200	0.29	750	1.0					
SV-4	По	435	0.63	750	1.0					
SV-5	По	250	0.36	750	1.0					
SV-6	По	195	0.28	750	1.0					
SV-7	По	205	0.30	750	1.0					
SV-8	По	230	0.33	750	1.0					
SV-9	По	210	0.30	750	1.0					
	Subtotals	2080	3.00	6750	9.0					

Simulated ASR/Recovery Wells MCGB

13

Simulated ASR/Recovery Wells MCGB

		Estimated Capacities							
	Target	Injec	ction	Produ	uction				
Well ID	Aquifer	(gpm)	(mgd)	(gpm)	(mgd)				
HB5	A/AA/Tu	340	0.49	750	1.0				
SC2	AA/Tu	245	0.35	750	1.0				
SC4	A/AA/Tu	375	0.54	750	1.0				
SQ4	AA/Tu	375	0.54	580	0.8				
SQ7	A/AA	375	0.54	750	1.0				
SQ10	A/AA	375	0.54	750	1.0				
	Subtotals	2085	3.00	4330	5.8				

Model Scenario Descriptions

- Scenarios 1 3: Historical Hydrology of 1985 2015
 - In-Lieu Only (Scenario 1)
 - ASR Only (Scenario 2)
 - In-Lieu plus ASR (Scenario 3)
- Scenarios 4 6: Historical Hydrology of 1973 1984
 - In-Lieu Only (Scenario 4)
 - ASR Only (Scenario 5)
 - In-Lieu plus ASR (Scenario 6)
- Scenarios 7 9: Climate Change Hydrology of 2020 2070
 - In-Lieu Only (Scenario 7)
 - ASR Only (Scenario 8)
 - In-Lieu plus ASR (Scenario 9)

Model Scenarios 4 - 6

- Basic Parameters
 - Historical Climate of 1973 1984 (includes the 1976 – 1977 drought conditions)
 - Distribution of Project Flows Between Basins:
 - Scenario 4 In-Lieu Only: Flows distributed proportionally between basins based on relative In-Lieu demands of each District (SqCWD, SVWD and SLVWD)
 - Scenario 5 ASR Only: 50/50 split distribution of flows between basins
 - Scenario 6 In-Lieu plus ASR: In-Lieu flows distributed proportionally, ASR flows 50/50 split distribution

Scenario 4 – In-Lieu Only Results Recharge – Recovery Flows

Scenario 4 – In-Lieu Only Simulated Recovery Wells - SMGB

18

Scenario 4 – In-Lieu Only Simulated Recovery Wells - MCGB

19

Scenario 5 – ASR Only Recharge – Recovery Flows

TOTAL INFRASTRUCTURE CAPACITY (MGD) Injection: 5.5 Extraction: 4.0

Scenario 5 – ASR Only Simulated ASR Wells - SMGB

21

Scenario 5 – ASR Only Simulated ASR Wells - MCGB

22

Scenario 6 – In-Lieu plus ASR Recharge – Recovery Flows

Scenario 6 – In-Lieu plus ASR Simulated ASR Wells - SMGB

24

Scenario 6 – In-Lieu plus ASR Simulated ASR Wells - MCGB

25

Groundwater Modeling Interpretation of Results

- Aquifer Storage Capacities Water Budget Results
 - Maximum volumes of storage achieved
- Hydraulic Losses Water Budget Results
 - Increases in outflow
 - Decreases in inflow
- Sustainable Injection Rates Water Level Responses
 - Water levels remain below ground surface
- Basin Impacts Water Budget & Water Levels
 - Net storage depletion
 - Depressed water levels
 - Other pumping wells
 - Coastal MWs

Scenarios 4 – 6 Results Cumulative Storage Changes - MCGB

Scenarios 4 – 6 Results Cumulative Storage Losses - MCGB

Scenarios 4 – 6 Results Sources of Storage Losses - MCGB

F

Scenarios 4 – 6 Results ASR Well Water Levels - MCGB

F

Scenarios 4 – 6 Results ASR Well Water Levels - MCGB

Ę

Scenarios 4 – 6 Results Production Well Water Levels - MCGB

Scenarios 4 – 6 Results Coastal MW Water Levels - MCGB

Groundwater Modeling Summary of Key Findings from Scenarios 4-6

- **1.** Aquifer Storage Capacities
 - SMGB ~1.5 bg
 - MCGB ~1.5 bg
 - Combined ~3.0 bg
- 2. Hydraulic Losses
 - SMGB ~15% 20%
 - MCGB ~25% 30%
 - Greater losses for In-Lieu vs ASR

Groundwater Modeling

Summary of Key Findings from Scenarios 4 – 6 (con't)

- 3. Sustainable Well Injection Rates
 - SMGB ~0.35 mgd per well avg (3.0 mgd total)
 - MCGB ~0.50 mgd per well avg (3.0 mgd total)
 - Combined total for both basins ~6.0 mgd
- 4. Basin Impacts
 - Beneficial in both basins on Net Basis
 - Potential for negative impacts at nearest prod. wells during City recovery pumping in both basins
 - Potential for coastal water levels to transiently exceed Protective Elevations

Groundwater Modeling Potential Future Scenarios

- Additional In-Lieu Recovery Wells
- ASR Only on City-Owned Properties
- Longer "Fill Period" Assumption (e.g. 7 yrs)
- Additional Recharge Volumes Beyond City Needs
- ASR plus Pure Water Soquel
- Additional modeling using different Climate Change scenario
- Others?

WSAC ASR Performance Measures Phase 1 Status

	Task	Potential Performance Measures	Findings To Date
1.	1 - Existing Wells Screening	Suitable Existing Wells for Pilot Testing in Target Aquifers do not exist	Satisfied
1. C	2 - Site-Specific Injection apacity Analysis	Results show that avg. Injection Capacity of 250 gpm (+/- 10%) is unrealistic	Satisfied
1. N	3 - Geochemical Interaction Iodeling	Results show that undesirable geochemical interactions are likely	Satisfied
1.	5 - Groundwater Modeling	Results show that target aquifers cannot sustain needed injection or recovery rates or unacceptable hydraulic losses occur	SATISFIED

Current Status Summary

- Phase 1 Investigation is Essentially Complete.
 Ongoing Tasks Include:
 - SMGB Test Well Site Identification Work Plan
 - Climate Change Evaluation
 - Additional Groundwater Modeling Scenarios/Iterations
- WSAC Performance Measures for Phase 1 Satisfied
- No Fatal Flaws Identified
- Phase 2 is Advancing in the MCGB with Beltz 12 Pilot Test

Next Steps

- Beltz 12 ASR Pilot Test (Phase 2)
- Test Well Site in SMGB (Phase 2)
- Climate Change Scenario Evaluation
- Infrastructure Evaluation
- Additional Modeling

Phase 2 ASR Pilot Testing Beltz 12 (Tu/AA/A Aquifers of MCBG)

Phase 2 ASR Pilot Testing Beltz 12 (Tu/AA/A Aquifers of MCBG)

- Primary Purposes:
 - Determination of sustainable injection/recovery pumping rates
 - Evaluation of well plugging rates/backflushing requirements
 - Determination of local aquifer response to injection/recovery pumping
 - Evaluation of water-quality changes during storage and recovery (focus on DBPs and Mn)

Phase 2 ASR Pilot Testing Beltz 12 (Tu/AA/A Aquifers of MCBG)

• ASR Cycle Test Program:

ASR		I	njectior	ו		Storage	Recovery					
Cycle	Period	Rate	Total Volume		Radius	Period	Period	Rate	Volu	me	Discharge	
No.	(days)	(gpm)	(mg)	(af)	(ft)	(days)	(days)	(gpm)	(mg)	(af)	Location	
1	1	400	0.58	1.77	18	2	1	700	1.01	3.09	Storm Drain	
2	7	400	4.03	12.4	46	14	6	700	6.05	18.6	Storm Drain	
3	30	400	17.3	53.0	96	60	30	400	17.3	53.0	Distribution	
Total Duration (days):			151									
Total Injection Volume (mg):			21.9									
Total R	ecovery '	√olume ((mg):	24.3								

• Project Tasks and Schedule:

		Duration
Task / Activity	Time Period	(months)
CEQA and Permitting	Sep 2018 - Nov 2018	3
Site Preparation	Nov 2018	1
ASR Cycles	Dec 2018 - May 2019	6
Data Analysis and Reporting	Jun 2019 - Jul 2019	2
	Total:	12

Questions / Discussion

Ē

Scenarios 4 – 6 Results Annual Storage Changes - SMGB

Scenarios 4 – 6 Results Annual Storage Changes - MCGB

Scenarios 4 – 6 Results Cumulative Storage Changes - SMGB

Scenarios 4 – 6 Results Cumulative Storage Losses - SMGB

Scenarios 4 – 6 Results Sources of Storage Losses - SMGB

Scenarios 4 – 6 Results ASR Well Water Levels - SMGB

Scenarios 4 – 6 Results ASR Well Water Levels - SMGB

Scenarios 4 – 6 Results Production Well Water Levels - SMGB

